Transglutaminase 2 Induces Nuclear Factor- B Activation via a Novel Pathway in BV-2 Microglia*

نویسندگان

  • Jongmin Lee
  • Yoon-Seong Kim
  • Dong-Hee Choi
  • Moon Suk Bang
  • Tai Ryoon Han
  • Tong H. Joh
  • Soo-Youl Kim
چکیده

Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases. We demonstrated previously that inhibitors of TGase 2 reduce nitric oxide (NO) generation in a lipopolysaccharide (LPS)-treated microglial cell line. However, the precise mechanism by which TGase 2 promotes inflammation remains unclear. We found that TGase 2 activates the transcriptional activator nuclear factor (NF)B and thereby enhances LPSinduced expression of inducible nitric-oxide synthase. TGase 2 activates NFB via a novel pathway. Rather than stimulating phosphorylation and degradation of the inhibitory subunit of NFB (IB ), TGase2 induces its polymerization. This polymerization results in dissociation of NFB and its translocation to the nucleus, where it is capable of up-regulating a host of inflammatory genes, including inducible nitric-oxide synthase and tumor necrosis factor (TNF). Indeed, TGase inhibitors prevent depletion of monomeric IB in the cytosol of cells overexpressing TGase 2. In an LPS-induced rat brain injury model, TGase inhibitors significantly reduced TNFsynthesis. The findings are consistent with a model in which LPS-induced NFB activation is the result of phosphorylation of IB by IB kinase as well as IB polymerization by TGase 2. Safe and stable TGase2 inhibitors may be effective agents in diseases associated with inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway

Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...

متن کامل

Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia.

Transglutaminase 2 (TGase 2) expression is increased in inflammatory diseases. We demonstrated previously that inhibitors of TGase 2 reduce nitric oxide (NO) generation in a lipopolysaccharide (LPS)-treated microglial cell line. However, the precise mechanism by which TGase 2 promotes inflammation remains unclear. We found that TGase 2 activates the transcriptional activator nuclear factor (NF)...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

EOP, a newly synthesized ethyl pyruvate derivative, attenuates the production of inflammatory mediators via p38, ERK and NF-κB pathways in lipopolysaccharide-activated BV-2 microglial cells.

Microglia-induced neuroinflammation is an important pathological mechanism influencing various neurodegenerative disorders. Excess activation of microglia produces a myriad of proinflammatory mediators that decimate neurons. Hence, therapeutic strategies aimed to suppress the activation of microglia might lead to advancements in the treatment of neurodegenerative diseases. In this study, we syn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004